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Abstract 

Nested neural networks, consisting of small interconnected subnetworks, allow for 
the storage and retrieval of neural state patterns of different sizes. The subnetworks are 
naturally categorized by layers corresponding to spatial frequencies in the pattern field. 
The storage capacity and the error correction capability of the subnetworks generally 
increase with the degree of connectivity between layers (the “nesting degree”). Storage 
of only few subpatterns in each subnetwork results in a vast storage capacity of patterns 
and subpatterns in the nested network, maintaining high stability and error correction 
capability. 

‘Senior Research Associate of the National Research Council at the NASA Ames Research Center, Moffett 
Field, CA 94035, on sabbatical leave from the Department of Electrical Engineering, Technion, Israel Institute 
of Technology, Haifa 32000, Israel. 
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1 Introduction 

Biological neural networks are generally perceived as large populations of interconnected 
brain cells. Their anatomy and physiology are only partly known or understood, yet 
certain empirically observed characteristics seem widely recognized (see a recent account 
by Crick and Asanuma [l]). The neuron’s state, its membrane potential, depends on 
the states of other neurons connected to it and on an external potential induced through 
some interface by a sensory device. Inter-neural connections consist of fibers transmitting 
electric charges from one neuron to another through synaptic contacts. Not all neurons are 
directly interconnected, yet every two neurons are connected by a small number of indirect 
connections. Most of the inter-neuron fibers extend for relatively short distances (less than 
1 mm), but a significant number spread for longer distances. A typical cortical area is not 
connected directly to all or even most other areas. Information processing, as evidenced 
by neural firing activity, is distributed throughout the cortex. Single neurons or groups of 

neurons may be eliminated without causing a noticeable degradation in performance. 

Neural information processing models largely assume that information is stored in 
the synaptic contacts and conveyed by patterns of neural states (see, e.g., Rosenblatt 
[2], Kohonen [3] and Grossberg [4]). A model based on the Hebbian storage mechanism 
( [ 5 ] ,  see also Cooper [6]) and the McCulloch-Pitts retrieval mechanism [7] was shown by 
Hopfield [8] to possess a certain associative memory capability. The model consists of N 
interconnected neurons, each capable of being in one of two states, represented by the 
values fl. Denoting the state of the i’th neuron by xi, the state of the network is defined 
as the vector z = (21,. . . , Z N ) ~ ,  where (-)T denotes transpose. The information in M 
given patterns, x(l), . . . , dM) ,  is stored in synaptic parameters, calculated according to the 
Hebbian learning rule as 

k 1  I=1 

However, in the Hopfield model Ti,i = 0, i = 1,. . . , N .  Information is retrieved when the 
network is probed by some pattern, which constitutes the initial state. The neural states 
are then updated, one at a time, according to the McCulloch-Pitts rule 

While the neuron state values were assumed to be binary [8], a biologically more accurate 
graded response model was shown to behave in essentially the same manner as the binary 

2 



one [9]. Each neuron was generally assumed to be connected to all the other neurons 
by two-directional connections. The possibility of disconnected neurons was addressed by 
simply substituting zeros for the corresponding synaptic parameter value. However, no 
specific partial connectivity patterns or potential advantages thereof have been mentioned. 

The network was shown by Hopfield [SI to be globally stable in the sense that, when 
probed by any pattern, it converges to a final state, which locally minimizes the energy 
function -xTTx .  Such stability was shown to follow from the symmetry of T and the 
asynchronous neural update rule (2). Hopfield also found empirically that a network of 
100 neurons converges to the stored pattern nearest to the probe without severe error if 
it stores less than 15 patterns and every two patterns differ by 50 f 5 bits [8]. The latter 
requirement is equivalent to near-orthogonality in the Euclidean sense, which does not seem 
to be readily resolvable for network-size patterns. The storage capacity of the network has 
been defined as the number of stored patterns that are equilibrium points (see, e.g., Abu- 
Mostafa and St.Jacques [lo]). McEliece et al. [ll] and Bruce et al. [12] independently 
showed, using large sample assumptions, that for random stored patterns to be equilibrium 
points of the network with finite probability, their number cannot exceed N/(2logN), where 
N is the number of neurons. Montgomery and Vijayakumar [13] showed that the maximal 
number of stored patterns that can be guaranteed to be equilibrium points of the network 
for the worst choice of such patterns is 1 for zero-valued diagonal synaptic parameters, 
independently of the network size. It was further shown by Dembo [14] that the worst case 

capacity for nonzero diagonal parameters is 2, for N 2 6 (It is shown in the present paper 
that the maximal capacity for the latter case is 2 for N = 2, 3 for N = 3 and 2 for N 2 4). 
It is known that if the stored patterns are restricted to be mutually orthogonal, they are 
equilibrium points of the network. The number of such patterns is, of course, bounded by 
N and the network loses its error correction capability as the number of orthogonal stored 
patterns reaches N (see, e.g. Horn and Weyers [15]). A storage rule that guarantees that 
the stored patterns are equilibrium points of the network will be called a “safe storage” 
rule. 

The network structures considered in this work were largely motivated by the obser- 
vation that while the safe storage of network-size patterns in a large fully connected neural 
network is either unresolvable (if only orthogonal patterns are to be stored) or of little 
practical use (if only two patterns are to be stored), the safe storage of subpatterns in 
relatively small subnetworks can be sensibly accomplished and will result in a vast storage 
capacity of the entire network. The sizes of the subpatterns are naturally categorized by 
spatial periods or frequencies in the pattern field. The corresponding subnetworks are 

- 
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subsequently categorized by layers, each corresponding to a spatial frequency. Inter-layer 
connections are suggested by the fact that points in the pattern field may be shared by sub- 
patterns of different sizes. Connecting each neuron at a given layer to its nearest neighbors 
in lower layers results in the nesting of subnetworks corresponding to neighboring layers 
and sharing a common neuron. The number of consecutive layers connected in this fashion 
defines the network’s “nesting degree”. The emerging network structures resemble the 
“fractal” forms studied by Mandelbrot [16], who conjectured, in general terms, the fractal 
geometry of neural networks. He wrote: “The Purkinje cells in mammalian cerebellum are 
practically flat and their dendrites form a plane-filling maze. From mammals to pigeon, 
alligator, frog and fish, the degree of filling decreases (Llinas 1969). It would be nice if 
this corresponded to a decrease in D [the Hausdorff-Besicovich dimension], but the notion 
that neurons are fractal remains conjectural”. I have chosen to use the term “nested” 
rather than fractal, not only because the former seems more descriptive and familiar than 
the latter, but, in particular, because the “nesting degree”, as defined in this work, seems 
central to the proposed network structures. While the specific fractal structures examined 
by Mandelbrot, such as the Koch tree, do not allow for nesting degrees higher than 2, 
certain similar structures allow, as shown in this work, for higher nesting degrees. 

The storage and retrieval of information in a nested neural network are naturally 
accomplished in the form of subpatterns. The storage capacity and the error correction 
capability of the subnetworks in a nested network are shown to generally increase with 
the nesting degree. Storage of only few patterns in each subnetwork is suggested by 
both physical and information retrieval considerations. The worst-case capacity of nested 
subnetworks is the same as that of externally disconnected networks of the same size 
and their error correction capability is generally higher. The probability of orthogonality 
between random patterns is shown to be approximately inversely proportional to the square 
root of the pattern size. It follows that the orthogonality condition can be sensibly met 
in the storage of subpatterns in a nested network, using a simple threshold function. 
For random subpatterns stored in relatively large subnetworks, the probabilities of local 
stability and error correction are shown to increase with the nesting degree. The fact that 
large patterns often share some or many of their subpatterns implies that the number of 
different network-size patterns that can be stored and retrieved in the nested network is 
exponential in the number of the subnetworks. Storage of relatively few subpatterns in 
each subnetwork results in a vast storage capacity of the entire network, maintaining the 
stability and error correction capability of the subnetworks. The nested structure also 
allows for the retrieval of individual subpatterns. It requires considerably less wires and 
connection devices than fully connected networks, and allows for the local reconstruction 

4 



of damaged subnetworks without rewiring the entire network. 

2 Nested Neural Networks 

Let a pattern field be defined by the sample points in a bounded regime of a multidimen- 
sional Euclidean space, sampled according to some sampling geometry (e.g., rectangular 
or hexagonal) at P different spatial frequencies (see, e.g., Dudgeon and Mersereau [17]). 
Suppose that a neuron is placed at each sample point and, for positive integers K p ,  let the 
neurons corresponding to the p’th frequency be arranged in groups of K p  - 1 fully inter- 
connected neighboring neurons. Suppose that, for some positive integer s, each neuron at 

,. the i’th layer is connected to its K p  - 1 neighbors in the p’th layer, for each p in the range 
i - S 5 p 5 i, if i 2 S, or in the range p < i, if i < S. Each neuron at the i’th layer is then 
a member of S subnetworks corresponding to S consecutive lower layers (including the i’th 
layer), if i 2 S, or of i subnetworks corresponding to all the lower layers, if i < S. In the 
emerging structure, subnetworks corresponding to lower layers (higher spatial frequencies) 
are “nested” in subnetworks corresponding to higher layers. The parameter S may then 
be characterized as the nesting degree of the network. 

Connecting each neuron at a given layer to its nearest neighbors in the neighboring 
lower layer results in a simple connectivity pattern between layers, with each neuron in 
every layer except the lowest one being a member of two subnetworks corresponding to 
neighboring spatial frequencies. Such network structures may be generated by branching, 
much like the Koch tree ([lS]). Figure l(a) shows such a nested network of 5 layers and 4 
or 5 neurons in each subnetwork, depending on whether the layers are connected (S = 2) 
or disconnected (S = 1). In this network, neurons are located at the four corners and the 
center of each square. The smallest squares represent the subnetworks of the first layer, 
corresponding to the highest spatial frequency. Larger squares represent higher layers of 
the network, corresponding to lower frequencies. For graphical clarity the figure does not 
detail all the inter-neural connections within the subnetworks, which may be generally 
assumed to be fully connected. In contrast to the network in Figure l(a), which does 
not allow for nesting degrees higher than 2, the network in Figure l(b) allows for higher 
nesting degrees. The latter can be seen to be sparse in the Euclidean topology, and may 
not be suitable for the direct sampling of, say, a visual pattern field. As shown next, this 
sparsity can be removed by chosing different sampling geometries. 

Figure l(c) shows a nested neural network of hexagonal structure. The hexagonal 
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Figure 1: Nested network structures 
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sampling geometry is known to be the most efficient from the viewpoints of space filling and 
multidimensional bandlimited signal representation (see [17]). Hexagonal lattice structures 
have been observed in the primate retina and visual cortex (see, e.g., Ahumada [18] and 
Watson and Ahumada [19]). An exact construction of such structures can be obtained using 
the hexagonal sampling matrix (see, e.g., [17], [19]). It can be seen that in this network each 
neuron at a given layer can become a member of subnetworks in any number of lower layers 
when it is connected to its nearest neighbors in those layers. The hexagonal structure also 

provides a high degree of spatial symmetry, which would be required in order to achieve 
the property of rotation invariance in visual pattern recognition. While the hexagonal 
structure is optimal from the sampling viewpoint, nested networks of larger sizes would 
provide, as shown in the next section, higher error correction capabilities. Such networks 
can be obtained using rectangular periodic sampling ([17], p. 63), which also allows for 
the generalization of the nested structure into one with different subnetwork sizes for each 
layer, maintaining relatively compact packing and, as in the hexagonal structure, high 
nesting degrees. Figure l(d) depicts such a network consisting of 3 layers of subnetwork 
sizes 9, 25 and 4. The subnetworks are represented by squares. For graphical clarity, the 
neurons of only one subnetwork in each layer are shown, without the connections within 
the subnetwork, which may be assumed to be fully connected. 

The determination of a sensible sampling rule is, then, a key to the design of a nested 
neural network. Given a sampling geometry, the design requires the determination of the 
sampling frequencies. These can be determined by first performing spectral estimation on 
a given set of “training patterns”, viewing them as bandlimited multidimensional signals, 
and then applying the sampling theorem (see, e.g., [17]). The construction rule for a 
nested network is simple: duplicate (branch out) and connect. The basic unit, a neuron, 
is duplicated a number of times and the resulting group is connected into a new unit, 
which is duplicated by the same rule into a group which is connected and duplicated, 
etc.. The resulting network can withstand extensive damage because of the high degree 
of duplicity. Moreover, damaged neurons or subnetworks can be repaired or recreated 
locally without recreating or rewiring the whole network, which stands in contrast to fully 
connected networks. Also, nested networks require considerably less wires (fibers, “white 
matter”) and connection devices (synapses) than fully connected ones. 
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3 Information Storage and Retrieval 

Let the state of the k’th neuron be denoted by z k  and suppose that it can only take 
the binary values fl. Denoting the state of the network by z, let z[i] define a vector 
arranged in the same order as 2, whose components corresponding to the i’th subnetwork 
are the same as those of the j’th subpattern stored in that subnetwork and the others 
are zero. Although z!:! is a network-size vector, the information it contains is essentially 
concentrated in the few bits corresponding to the i’th subnetwork and, subsequently, it 
will be refered to as a “subpattern”. Since the zero components of a subpattern do not 
affect the corresponding synaptic parameters, the subpattern z::) may be viewed as being 
stored exclusively in the i’th subnetwork. The matrix of synaptic parameters for the nested 
network, corresponding to the Hebbian storage rule, can then be written as 

where Mi denotes the number of subpatterns stored in the i’th subnetwork and L denotes 
the number of subnetworks. The resulting matrix T is symmetric and highly sparse. 
Information retrieval is initiated by a probe (initial state) x(0). Neurons are then selected 
at random, one at a time, and their states are updated according to the McCulloch-Pitts 
rule (2). The storage mechanism (3) may be replaced by one in which the diagonal elements 
Ti,i are forced to be zero, as in the Hopfield model [ 8 ] .  Replacing the threshold 0 in the 
retrieval rule (2) by the threshold -q , iz;(n)  will then result in a network equivalent to 
one with the storage rule (3). 

Global stability, that is, convergence to some final state, is implied by the symmetry 
of the matrix of synaptic parameters, as in the case of fully connected networks. For a 

stored subpattern to be retrievable, it is necessary that it is an equilibrium point of the 
network that, once reached, is never left. Suppose that the k’th neuron is to be updated 
and that this neuron is a member of s k  nested subnetworks. Further suppose that the i’th 

Since the k’th neuron is only connected to neurons in the s k  subnetworks, we have 

of these subnetworks stores Mi subpatterns and that its state is a stored subpattern qi\ (1.1 . 

The neuron in question obviously has the same value in all the subpatterns z[:),i = 

8 



1,. . . , Sk, hence, 

j#li 

where K is the number of neurons in each of the subnetworks, assumed for convenience to 
be uniform throughout the network. The k’th neuron will not change if and only if the 
sign of [ T z ] ~  is the same as that of 2k. This will be the case if and only if the second term 
of ( 5 )  does not offset the first. The stored subpatterns will be equilibrium points of the 
network if and only if this is true for each of the neurons. If a subnetwork stores replicas 
of a stored subpattern zt$) or its converse -z:$), the corresponding terms will be added to 
the first term in (5 ) ,  increasing it with respect to the second. This implies that if a stored 
subpattern is an equilibrium point of the network when the corresponding subnetwork does 
not store its replicas or converses, it will also be an equilibrium point when any number of 
its replicas and converses are stored in the same subnetwork. 

Denoting by d[#, z[$] the Hamming distance between 
d[# ,  zt:;]/K the proportional distance, ( 5 )  can be written as 

and zi:! and by (j) z (~ ) ]  ( 1 )  = 

an offset of the first term of (6) will not occur even in the worst case if and only if 

i= l  j=1 

j#li 

This is the necessary and sufficient condition for the stored subpatterns to be equilibrium 
points of the network. When the layers are disconnected (nesting degree l), the necessary 
and sufficient condition is that for each of the subnetworks 

The latter is a sufficient but not necessary condition for (7). This implies that inter-layer 
connections potentially increase the likelihood that the stored subpatterns are equilibrium 
points of the network. 

Suppose that the i’th subnetwork stores M; subpatterns and that an additional sub- 
pattern z(i) (Mi+1) is to be stored. Let us denote by T ( M ; )  and T ( M ;  + 1) the synaptic 
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parameter matrix before and after the new storage, respectively. Also let I; denote the 
index set of the neurons of the i'th subnetwork. Then, for each IC E I;, we have 

For the last subpattern to be an equilibrium point of the network, it is necessary that 

The latter represents a storage constraint, which redefines the storage rule to be 
, 

It should be noted that condition (8) is necessary even when additional subpatterns are 
stored in the i'th subnetwork after the M; + l'st subpattern, if the latter is to be an 
equilibrium point even in the worst case, as these additional subpatterns may be orthogonal 
to it. The condition will be satisfied under the safe storage mechanisms discussed in 
the sequel and may be imposed on the storage of random subpatterns, increasing the 
probability that these subpatterns become equilibrium points of the network. 

Even when the stored subpatterns are equilibrium points of the network, they do not 
necessarily attract neighboring states. Such local attraction may be characterized as an 
error correction capability, as it will provide convergence to the correct subpattern, when 
the corresponding subpattern in the probe represents a sufficiently small diversion from a 

stored subpattern. Suppose that the k'th neuron is to be updated and that it is a member 
of Sk nested subnetworks, the i'th of which stores M; patterns. Let the subpattern nearest 
to the probe in the i'th subnetwork be Denoting (y,z) = yTx, we have 

which can be written as 

I Assuming that there is no conflict between the k'th bits of x[:), i = 1,. . . , s k  (otherwise 
simultaneous convergence to all the stored subpatterns closest to the probe is not possible), i 
and that T[z&{,z]  < 1/2,  i = 1,. . . ,Sk, it can be seen that the distances d[z(,i 0.) ,z], i = 
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I,. . . , s k  will decrease (if Z k  # [z(~ (1.1 ] k )  or remain the same (if Z k  = [q; (1.1 ] k )  if and only if the 

the stored subpatterns (1.1 , i = 1,. . . , s k ,  the corresponding terms will be included in the 

sign of [ T Z ] k  is the same as that of [ # ] k ,  which will be the case if and only if the double 
sum in (11) does not offset the first sum. If a subnetwork contains replicas or converses of 

first sum of (ll), increasing its magnitude with respect to the double sum. It follows that 
if the network approaches the stored subpatterns when no replicas or converses of these 
subpatterns are stored, it will also do so when replicas and converses are stored. 

It seems sensible that each synaptic contact can only have a certain maximal strength, 
implying that the synaptic parameter values are restricted to be between some extrema1 
values. Furthermore, storage of an unlimited number of patterns would require that the 
sensitivity of the synapses to a relative change in the number of stored patterns increase 
with this number in order to maintain accuracy, which does not seem to make physical 
sense. When the Hebbian storage rule is used, the diagonal elements T;,i count the stored 
patterns and storage may terminate when they exceed a certain value. A maximal value 
of T,,, for the synaptic parameters allows for the storage of T ! , , / s k  subpatterns, on 
the average, in each of the s k  nested subnetworks, sharing the k'th neuron. This stor- 
age constraint would imply that the maximum capacity of a fully connected network is 
essentially independent of the network size. As shown in the rest of this section, such 
restriction on the number of stored subpatterns is also suggested by analytical information 
retrieval considerations and further justifies the fragmentation of large networks into small 
su bnetworks. 

3.1 Safe Storage 

Suppose that each subnetwork stores, at most, two subpatterns. Denoting the subpatterns 
stored in the i'th subnetwork sharing the k'th neuron by ziij and z[i] and assuming that 
the probe consists of the stored subpatterns z[ij, i = 1, .  . . , s k ,  we have 

Since, for z(i) ( 1 )  # z ( ~ ) ,  (2) I (z!$,z[$)) I< K ,  the sign of [ T z ] k  is the same as that of z k .  It 

follows that if the number of subpatterns stored in each of the subnetworks does not exceed 
2, they are equilibrium points of the network. For K=2, there can only be two different 
subpatterns and, unless they are converse, they would be mutually orthogonal, yielding 
(z(? %(?I) = 0. Hence, [ T z ] k  = 2 s k z k ,  implying that the stored subpatterns are equilibrium 

(a) ' (8) 
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points of the network. For K=3, storage of 3 subpatterns, ~ ( ~ 1 ,  (j) 3 = 1 , 2 , 3 , i  = 1,. . . , s k ,  
in each subnetwork yields, assuming, as before, that the corresponding subpatterns of the 
probe are identical to x(;), (1) 2 * = 1,. . . , s k ,  

For z[;] # x[:] and z(;) (3) # z ( ~ ) ,  (1) we have I (2) z ( ~ )  (1)) I= 1 and I ( z ( ~ ) ,  (3) .()) ) I= 1, implying that 
the first term of (13) has a greater magnitude than the second and, consequently, the stored 
subpatterns are equilibrium points of the network. It follows from similar arguments that 
in the storage of more than 3 subpatterns in each subnetwork, the second term may exceed 
the first in magnitude and the stored subpatterns cannot be guaranteed to be equilibrium 
points. Hence, for K = 3, the stored subpatterns can be guaranteed to be equilibrium 
points of the network even in the worst case if and only if their number does not exceed 3. 

For K 2 4 let the subpatterns stored in each of the subnetworks sharing the k’th 
neuron be 3 vectors, the first of which has +1 in all positions, the second has -1 in the 
k’th position and +1 elsewhere and the third has +1 in the k’th position and -1 elsewhere 
(only the components of these subpatterns corresponding to the associated subnetworks 
are mentioned, the others being 0). It can be readily verified that the k’th element of Tx is 

for K 2 4, the subpatterns stored in each subnetwork can be guaranteed to be equilibrium 
points of the network if and only if their number in each subnetwork does not exceed 2. 
It might be noted that the same results can be obtained for a fully connected network by 
taking s k  = 1 and K = N. The present result for the latter case is somewhat tighter than 
that presented in [ 1 4 ] ,  which states that the worst-case capacity is 2 for N 2 6. In order 
to restrict the storage to 2 subpatterns per subnetwork, the maximal allowable value of 
the synaptic parameters must be set to 2S, where S is the nesting degree of the network. 

- S k ( K  - 41, whose sign is different from that of Z k  = [E:J~ x ( i ) ] k  (1) = s k  for K 2 4. Hence, 

We have seen that for the stored subpatterns to be equilibrium points of the network 
even in the worst case, a nested network of subnetwork size 2 can store only two sub- 
patterns in each of the subnetworks. A nested network of subnetwork size 3 can store 3 
subpatterns in each subnetwork and nested networks of larger subnetwork sizes can store 
only 2 subpatterns per subnetwork. This may suggest a certain advantage of networks of 

subnetwork sizes 2 and 3. However, as shown next, such networks have no error correction 
capability. 

Suppose again that the k’th neuron is to be updated and that this neuron is a member 
of s k  nested subnetworks. Suppose further that two subpatterns, at most, are stored in 
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each of these subnetworks and denote the stored subpattern closer to the the probe in the 
i'th subnetwork by z[i)) and the other by z[t)). We have 

(1) e Assuming that there is no conflict between the values of the k'th neurons in all z ( ~ ) ,  z = 

1,. . . , Sk (otherwise, there cannot be a simultanous convergence to all the subpatterns 
closest to the probe) and that d [z [ i ] , z ]  < K/2, i = 1,. . . , Sk, it can be seen that in the 
worst case the distances d[z[ t j ,z ]  will decrease (if zk # [z[;]]k) or remain the same (if 

zk = [ ~ ( ~ ) ] k )  (1) if and only if 

i=l i=l 

It can be readily verified that the latter condition cannot sensibly hold for networks of 
subnetwork size 2 or 3 (noting that for a single erroneous bit ~ [ z ( ~ ) , z ]  (1) = 1/2, for K = 

(1) (2) (1) 
$ 

2, T [ z ( ~ ) , z ]  = 1/3, for K = 3 and assuming ~ [ z ( ~ )  ,z] > ~[z(;),z]). It follows that nested 
networks of subnetwork sizes 2 or 3 lack any error correction capability. A sufficient 
condition for (15) is 

yielding the simultanous conditions 

and 

A normal situation would be one in which the two subpatterns stored in a subnetwork 
are substantially different from each other and the corresponding subpattern of the probe 
is close to one of them (the probe representing a possibly erroneous version of a stored 
pattern). Typical values are, say, ~[z$/, z] = 0.1 and T [ z ( ; ) ,  (2) z] = 0.6. Since zi;] and z can be 

assumed, in essence, to be statistically independent, the normalized distance between them, 
?[zit)), z], will approach 0.5 as the pattern size increases. Condition (18) is, then, more likely 
to hold as the subnetwork size increases. The probability of condition (18) holding, given 
that condition (17) does, constitutes a lower bound on the error correction probability 
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of the network. While the calculation of this probability is generally a combinatorially 
hard computation problem, it can be performed for small subnetworks. For sizes 5 and 7 
(compatible with the square and hexagonal structures of Figures l(a) and l(c)) and for 

bound on the error correction probability was found to be 
r[z(;),z] (1) 5 0.2 (that is, one erroneous bit, at most, out of 5 or 7, respectively), the lower 

Ps 2 0.9689 P7 2 0.9928 

It can be seen that, even for small subnetworks, storage of only two subpatterns guarantees 
a high error correction capability. It should also be noted that conditions (17) and (18) 
yield convergence to the subpatterns closest to the probe in a single update cycle. 

3.2 Orthogonal Subpatterns 

The safe storage capacity of 2 subpatterns per subnetwork may be increased if the storage 
mechanism is made discriminatory. Since the only information assumed to be available in 
the network consists of the state variables and the synaptic parameters, any discrimination 
rule must be based on their values. It can be seen from (6) that a sufficient condition for 
the stored subpatterns to be equilibrium points of the network is 

I which means that the subpatterns stored in each of the subnetworks are mutually orthog- 
I 

onal in the Euclidean sense. Storage of only orthogonal subpatterns would also eliminate 
the redundant storage of nearly repetitive ones. It can be accomplished by modifying the 
storage rule to be 

After one pattern of size N is stored, the probability that another random pattern of 
I 

the same size is orthogonal to the first is 

PN = - 2:-1(;2) 

Employing the Stirling approximation (see, e.g., Hamming [ZO], p. 165) N !  ~li N N e - N m ,  
we obtain 

r) 

14 



Hence, the probability that the second pattern is orthogonal to the first is, approximately, 
inversely proportional to the square root of the pattern size. It follows that the orthog- 
onality requirement is impractical for the storage of network-size patterns in large fully 
connected networks, as almost every pattern following the first will be rejected. On the 
other hand, for nested networks consisting of relatively small subnetworks, the ort hogo- 
ndity condition allows for the storage of subpatterns with relatively high probability. For 
instance, the above approximation gives 

Pe = 0.3257, Pi0 = 0.2523, Pi00 = 0.0798 

The fact that orthogonality, which guarantees stability at the stored subpatterns, can be 
more sensibly accomodated in small networks than in large ones, further motivates the 
fragmentatin of large networks into small subnetworks. 

The error correction capability of the nested network is examined next, under the 
assumption that the stored subpatterns are mutually orthogonal. Suppose, as before, that 
the k’th neuron is to be updated and that it is a member of Sk nested subnetworks, the 
i’th of which stores Mi subpatterns. Let the subpattern nearest to the probe in the i’th 
subnetwork be Then assuming, as before, that there is no conflict between the k’th 

that the distances d[zi$), 21, i = 1,.  . . , Sk will decrease (if zk # [z&)]k) or remain the same 
(if x k  = [z[$)]k) even in the worst case if and only if 

bits of z(;i (1.1 ,i = 1, .  . . , S k  and that T[z&),  z] < 1/2, i = 1,.  . . , S k ,  it can be seen from (11) 

s h  s h  Mi 

C K ( 1  - 2T[z[;$Z]) > I K(1 - 2T[Z[i)),2]) I 
i=l i=l j = 1  

j# l i  

It follows that, since the stored patterns are mutually orthogonal, the maximum possible 

~\z!5,’,z] = 1/2 + r[z{:),z]). It follows that convergence to the subpatterns closest to the 
probe can be guaranteed if and only if 

value of I 1 - 2r[z[i)), z] I is 2r[z$, z] (it is obtained for either T[Z[ ; ! ,  z] = 1/2 - T[z ( ; )  (li 1 ,2] or 

A sufficient condition for (21) is 

yielding . 
1 

T[Z&{ ,Z]  < - for i=1, ..., Sk 
2Mi 
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or 
i I Mi < for i = 1, ..., S k  

2 4 x 3 ,  XI 

It follows that the correction of errors of a given proportional size r is guaranteed if each of 

the subnetworks stores M < 1/2r patterns. While for a nested network with disconnected 
layers ( s k  = 1) the latter condition is not only sufficient but also necessary, it is only 
sufficient for nested networks with connected layers ( s k  2 1). This implies that inter-layer 
connections enhance the potential error correction capability of the network. The number 
of mutually orthogonal subpatterns that can be stored in a subnetwork is restricted, of 

course, by the subnetwork size. The error correction capability will reduce as the number 
of stored patterns is increased, as the diagonal elements of the synaptic parameter matrix 
will become large with respect to the nondiagonal elements. 

3.3 Random Subpatterns 

When no discrimination is applied to the storage of subpatterns, the latter may be regarded 
as random vectors, whose components are generated as a sequence of Bernoulli trials (see, 
e.g., [ll]). Writing (5) as 

i=l j = 1  m=l 
j#li 

where [z i$ , ,  and [z[;/]~, rn = 1, .  . . , K are the elements of z[$ and z[;/, respectively, 
corresponding to the i'th subnetwork, it can be seen that the triple sum on the right hand 
side of (24) is composed of K C?!.,(M; - 1) independent random variables, taking on the 
values fl. Suppose for simplicity that S k  = S and M; = M, i = 1, .  . . , S. Then for large 
K and M the second term on the right-hand side of (24) is asymptotically normal with 
mean zero and variance S K ( M  - 1). It follows that the probability that the second term 
will not exceed the first is, approximately for large K and M, given by 

1 SK P = - + erf { (-) "') where erf{y} = /' e-z2/2dz 
, 2 M - 1  0 

, , Since erf{y} is a monotone-increasing function, the probability that z k  will not change 
I 

increases with S. It follows that the probability that the stored subpatterns are equilibrium 
points of the network increases with the nesting degree. 

Next, suppose that the probe does not necessarily consist of stored subpatterns, and 
I that the subpattern nearest to the probe in the i'th subnetwork is xtf..;'. Writing (11) as 
I 
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where [zc(;)],,m = 1 . .  . , K are the elements of z corresponding to the i'th subnetwork, it 
follows from arguments similar to the above that the probability that the distances d[z[f), 23 
will decrease (if Xk # [Z[;)]k) or remain the same (if Zk = [TI&) is approximately, for 
large K and M, 

I I  M - 1  
\ '  ' 1  

which implies that the probability of error correction generally increases with the nesting 
degree. 

3.4 On the Retrieval of Patterns and Subpatterns 

The nested network, probed by any pattern, is expected to converge to the stored subpat- 
terns nearest to the corresponding subpatterns of the probe. These subpatterns may each 
constitute meaningful information or may jointly form larger subpatterns or network-size 
patterns. Even if very few subpatterns are stored in each subnetwork, these subpatterns 
can make up a vast number of larger patterns. To illustrate this point, suppose that 
the nested network has a total number of N neurons and a subnetwork size K, hence, at 
least N/K subnetworks (N/K being the number of subnetworks in the lowest layer). If 
the storage capacity of each subnetwork is C, the total capacity of the network is CNIK 
network-size patterns. For N = lo3, K = 10 and C = 2, this capacity is 2loo, which is 
vastly greater than, not only the safe capacity of 2 for fully connected networks, but also 
any known upper bound on the capacity of such networks. If patterns stored in subnet- 
works or in larger sections of the network can be read individually, the storage capacity is 
vastly greater yet. 

How can subpatterns be read or corrected? Suppose that each subnetwork stores the 
"null" subpattern, consisting of -1's in all the positions corresponding to the subnetwork 
and 0's elsewhere, in the initial values of the synaptic parameters and that any additional 
subpattern will only be stored if it is not null. Then when a subnetwork is probed by a null 
subpattern, it will also produce it as an output. The subnetwork can then be said to be 
inactivated. Reading an individual subnetwork or a group of subnetworks means that all 
the other subnetworks are inactivated. The probe may be viewed as a network-size pattern, 
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in which many or most of the subpatterns are null. It activates a certain set of subnetworks, 
corresponding to the subpatterns which are not null. Each of the affected subnetworks, in 
turn, converges to the stored subpattern nearest to the corresponding subpattern of the 
probe and the network as a whole produces the stored information corresponding to the 
probe. The network is then a memory device, in which there is a close correspondence 
between information and the address in which it is stored. 

4 Examples 

The nested network depicted in Figure 2, which consists of 85 neurons, has been used for 
illustration purposes. A fully connected network of the Hopfield type was also defined for 
comparison purposes, by connecting each of the neurons to all the other neurons, using 
the same sampling (by the same neurons) of the pattern field. (Both the cases of self- 
connected and self-disconnected neurons in the latter structure were examined; all of the 
results obtained were identical for the two cases). 

Four patterns were stored in the two networks. Because of the small size of the sub- 
networks, storage in the nested network was restricted to two subpatterns per subnetwork, 
including the null subpattern, by restricting the maximal synaptic parameter values to 4 
(as the nesting degree is 2). The networks were then probed by each of the patterns and 
the final patterns which the networks settled into were recorded. The results are shown 
in Figure 3. Part (a) of the figure shows the neurons that were activated by the probe 
(receiving the value +1), represented by dots. Parts (b) and (c) show the final states 
of the fully connected and the nested networks, respectively. It can be seen that while 
the fully connected network has “wiped out” the patterns, they were perfectly maintained 
by the nested network. The patterns were then corrupted by inverting the sign of every 
5’th neuron and the two networks were probed by the resulting patterns. The probes are 
shown in part (d) of Figure 3 and the final states of the fully connected network and the 
nested one are shown in parts (e) and (f) ,  respectively. It can be seen that, in spite of 
the high error rate, the original patterns were essentially recovered by the nested network. 
This, again, stands in contrast to the performance of the fully connected network, which 
eliminates the information. 

It might be suggested that, for the fully connected network to perform well, the 
patterns should occupy a larger portion of the pattern field (see, e.g., Lippman [21]). 
To examine this possibility and, at the same time, illustrate the reconstruction of large 
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Figure 2: The nested network used in the examples 

patterns from small stored subpatterns, the patterns A-J, depicted in Figure 4, were stored 
in the two networks. For the nested network, storage was restricted, as before, to 2 

subpatterns per subnetwork, including the null subpattern. Each of of the networks was 
then probed by each of the letters and the final patterns which the networks settled into 
were recorded. The average number of errors for the 10 patterns was 25.2 for the fully 
connected network and 8.1 for the nested one. The patterns are shown in Figure 5 for 
the letters A and J. It can be seen that, even for this small number of stored patterns, 
which conforms with the known capacity bounds for the Hopfield network ([8], [ll]), the 
fully connected network shows a considerably lower level of stability at the stored patterns 
than the nested one. The performance of the nested network in this case is particularly 
remarkable in view of the fact that it is required to reconstruct full network-size patterns 
(say, J) from stored subpatterns of other patterns (say, A, B), as only the first subpattern 
presented to each subnetwork, following the null subpattern, is stored. 

5 Conclusion 

Nested neural networks allow for the storage and retrieval of patterns of different sizes, 
which may individually constitute meaningful information or jointly form larger patterns. 
Restricted storage of only few subpatterns in each subnetwork results in a vast storage 
capacity for the entire network, maintaining high degrees of stability and error correction 
capability. This paper has considered only the possible role of a nested neural network as 
a memory device for predetermined patterns of neural states. The input-output interface 
of sensory information with such networks is the subject of present research. 

19 



Figure 3: The final states of the fully connected network (b), (e) and of the nested network 
(c), (f) in response to a probe (a) and a corrupted version of it (d)). 
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Figure 4: The patterns A-J stored in 

---*----- 
-----e--+--.-- 

-------e-------- 
---------------- 

.-.C.-.-eH- 
*--.---.---e-- 
.-.-cH.-.* 

the two networks. 

Figure 5: The final patterns of the fully connected network (b) and of the nested network 

(c), storing the patterns A-J and probed by the patterns A and J (a). 
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